Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

July 1992, Vol. 4, No. 4, Pages 473-493
(doi: 10.1162/neco.1992.4.4.473)
© 1992 Massachusetts Institute of Technology
Simplifying Neural Networks by Soft Weight-Sharing
Article PDF (1.09 MB)
Abstract

One way of simplifying neural networks so they generalize better is to add an extra term to the error function that will penalize complexity. Simple versions of this approach include penalizing the sum of the squares of the weights or penalizing the number of nonzero weights. We propose a more complicated penalty term in which the distribution of weight values is modeled as a mixture of multiple gaussians. A set of weights is simple if the weights have high probability density under the mixture model. This can be achieved by clustering the weights into subsets with the weights in each cluster having very similar values. Since we do not know the appropriate means or variances of the clusters in advance, we allow the parameters of the mixture model to adapt at the same time as the network learns. Simulations on two different problems demonstrate that this complexity term is more effective than previous complexity terms.