288 pp. per issue
6 x 9, illustrated
2014 Impact factor:

Neural Computation

May 1994, Vol. 6, No. 3, Pages 509-520
(doi: 10.1162/neco.1994.6.3.509)
© 1994 Massachusetts Institute of Technology
Finding the Embedding Dimension and Variable Dependencies in Time Series
Article PDF (527.37 KB)

We present a general method, the δ-test, which establishes functional dependencies given a sequence of measurements. The approach is based on calculating conditional probabilities from vector component distances. Imposing the requirement of continuity of the underlying function, the obtained values of the conditional probabilities carry information on the embedding dimension and variable dependencies. The power of the method is illustrated on synthetic time-series with different time-lag dependencies and noise levels and on the sunspot data. The virtue of the method for preprocessing data in the context of feedforward neural networks is demonstrated. Also, its applicability for tracking residual errors in output units is stressed.