Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

November 1994, Vol. 6, No. 6, Pages 1262-1275
(doi: 10.1162/neco.1994.6.6.1262)
© 1994 Massachusetts Institute of Technology
Degree of Approximation Results for Feedforward Networks Approximating Unknown Mappings and Their Derivatives
Article PDF (620.81 KB)
Abstract

Recently Barron (1993) has given rates for hidden layer feedforward networks with sigmoid activation functions approximating a class of functions satisfying a certain smoothness condition. These rates do not depend on the dimension of the input space. We extend Barron's results to feedforward networks with possibly nonsigmoid activation functions approximating mappings and their derivatives simultaneously. Our conditions are similar but not identical to Barron's, but we obtain the same rates of approximation, showing that the approximation error decreases at rates as fast as n−1/2, where n is the number of hidden units. The dimension of the input space appears only in the constants of our bounds.