Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

April 1, 1996, Vol. 8, No. 3, Pages 611-624
(doi: 10.1162/neco.1996.8.3.611)
© 1996 Massachusetts Institute of Technology
VC Dimension of an Integrate-and-Fire Neuron Model
Article PDF (714.7 KB)
Abstract

We compute the VC dimension of a leaky integrate-and-fire neuron model. The VC dimension quantifies the ability of a function class to partition an input pattern space, and can be considered a measure of computational capacity. In this case, the function class is the class of integrate-and-fire models generated by varying the integration time constant T and the threshold θ, the input space they partition is the space of continuous-time signals, and the binary partition is specified by whether or not the model reaches threshold at some specified time. We show that the VC dimension diverges only logarithmically with the input signal bandwidth N. We also extend this approach to arbitrary passive dendritic trees. The main contributions of this work are (1) it offers a novel treatment of computational capacity of this class of dynamic system; and (2) it provides a framework for analyzing the computational capabilities of the dynamic systems defined by networks of spiking neurons.