Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

November 15, 1997, Vol. 9, No. 8, Pages 1667-1676
(doi: 10.1162/neco.1997.9.8.1667)
© 1997 Massachusetts Institute of Technology
Convergence and Ordering of Kohonen's Batch Map
Article PDF (80.9 KB)
Abstract

The convergence and ordering of Kohonen's batch-mode self-organizing map with Heskes and Kappen's (1993) winner selection are proved. Selim and Ismail's (1984) objective function for k-means clustering is generalized in the convergence proof of the self-organizing map. It is shown that when the neighborhood relation is doubly decreasing, order in the map is preserved. An unordered map becomes ordered when a degenerate state of ordering is entered, where the number of distinct winners is one or two. One strategy to enter this state is to run the algorithm with a broad neighborhood relation.