Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

November 2006, Vol. 18, No. 11, Pages 2730-2761
(doi: 10.1162/neco.2006.18.11.2730)
© 2006 Massachusetts Institute of Technology
An Extended EM Algorithm for Joint Feature Extraction and Classification in Brain-Computer Interfaces
Article PDF (229.93 KB)
Abstract

For many electroencephalogram (EEG)-based brain-computer interfaces (BCIs), a tedious and time-consuming training process is needed to set parameters. In BCI Competition 2005, reducing the training process was explicitly proposed as a task. Furthermore, an effective BCI system needs to be adaptive to dynamic variations of brain signals; that is, its parameters need to be adjusted online. In this article, we introduce an extended expectation maximization (EM) algorithm, where the extraction and classification of common spatial pattern (CSP) features are performed jointly and iteratively. In each iteration, the training data set is updated using all or part of the test data and the labels predicted in the previous iteration. Based on the updated training data set, the CSP features are reextracted and classified using a standard EM algorithm. Since the training data set is updated frequently, the initial training data set can be small (semi-supervised case) or null (unsupervised case). During the above iterations, the parameters of the Bayes classifier and the CSP transformation matrix are also updated concurrently. In online situations, we can still run the training process to adjust the system parameters using unlabeled data while a subject is using the BCI system. The effectiveness of the algorithm depends on the robustness of CSP feature to noise and iteration convergence, which are discussed in this article. Our proposed approach has been applied to data set IVa of BCI Competition 2005. The data analysis results show that we can obtain satisfying prediction accuracy using our algorithm in the semisupervised and unsupervised cases. The convergence of the algorithm and robustness of CSP feature are also demonstrated in our data analysis.