Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

August 2006, Vol. 18, No. 8, Pages 1818-1846
(doi: 10.1162/neco.2006.18.8.1818)
© 2006 Massachusetts Institute of Technology
A Novel Neural Network for a Class of Convex Quadratic Minimax Problems
Article PDF (791.74 KB)
Abstract

Based on the inherent properties of convex quadratic minimax problems, this article presents a new neural network model for a class of convex quadratic minimax problems. We show that the new model is stable in the sense of Lyapunov and will converge to an exact saddle point in finite time by defining a proper convex energy function. Furthermore, global exponential stability of the new model is shown under mild conditions. Compared with the existing neural networks for the convex quadratic minimax problem, the proposed neural network has finite-time convergence, a simpler structure, and lower complexity. Thus, the proposed neural network is more suitable for parallel implementation by using simple hardware units. The validity and transient behavior of the proposed neural network are illustrated by some simulation results.