Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

October 2007, Vol. 19, No. 10, Pages 2665-2693
(doi: 10.1162/neco.2007.19.10.2665)
© 2007 Massachusetts Institute of Technology
Learning the Lie Groups of Visual Invariance
Article PDF (3.67 MB)
Abstract

A fundamental problem in biological and machine vision is visual invariance: How are objects perceived to be the same despite transformations such as translations, rotations, and scaling? In this letter, we describe a new, unsupervised approach to learning invariances based on Lie group theory. Unlike traditional approaches that sacrifice information about transformations to achieve invariance, the Lie group approach explicitly models the effects of transformations in images. As a result, estimates of transformations are available for other purposes, such as pose estimation and visuomotor control. Previous approaches based on first-order Taylor series expansions of images can be regarded as special cases of the Lie group approach, which utilizes a matrix-exponential-based generative model of images and can handle arbitrarily large transformations. We present an unsupervised expectation-maximization algorithm for learning Lie transformation operators directly from image data containing examples of transformations. Our experimental results show that the Lie operators learned by the algorithm from an artificial data set containing six types of affine transformations closely match the analytically predicted affine operators. We then demonstrate that the algorithm can also recover novel transformation operators from natural image sequences. We conclude by showing that the learned operators can be used to both generate and estimate transformations in images, thereby providing a basis for achieving visual invariance.