Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

December 2007, Vol. 19, No. 12, Pages 3310-3334
(doi: 10.1162/neco.2007.19.12.3310)
© 2007 Massachusetts Institute of Technology
Enhanced Sound Perception by Widespread-Onset Neuronal Responses in Auditory Cortex
Article PDF (510.97 KB)
Abstract

Accumulating evidence suggests that auditory cortical neurons exhibit widespread-onset responses and restricted sustained responses to sound stimuli. When a sound stimulus is presented to a subject, the auditory cortex first responds with transient discharges across a relatively large population of neurons, showing widespread-onset responses. As time passes, the activation becomes restricted to a small population of neurons that are preferentially driven by the stimulus, showing restricted sustained responses. The sustained responses are considered to have a role in expressing information about the stimulus, but it remains to be seen what roles the widespread-onset responses have in auditory information processing. We carried out numerical simulations of a neural network model for a lateral belt area of auditory cortex. In the network, dynamic cell assemblies expressed information about auditory sounds. Lateral excitatory and inhibitory connections were made between cell assemblies, respectively, by direct and indirect projections via interneurons. Widespread-onset neuronal responses to sound stimuli (bandpassed noises) took place over the network if lateral excitation preceded lateral inhibition, making a time widow for the onset responses. The widespread-onset responses contributed to the accelerating reaction time of neurons to sensory stimulation. Lateral interaction among dynamic cell assemblies was essential for maintaining ongoing membrane potentials near thresholds for action potential generation, thereby accelerating reaction time to subsequent sensory input as well. We suggest that the widespread-onset neuronal responses and the ongoing subthreshold cortical state, for which the coordination of lateral synaptic interaction among dissimilar cell assemblies is essential, may work together in order for the auditory cortex to quickly detect the sudden occurrence of sounds from the external environment.