Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

April 2009, Vol. 21, No. 4, Pages 911-959
(doi: 10.1162/neco.2008.01-07-432)
© 2008 Massachusetts Institute of Technology
Spiking Neurons Can Learn to Solve Information Bottleneck Problems and Extract Independent Components
Article PDF (1.04 MB)
Abstract

Independent component analysis (or blind source separation) is assumed to be an essential component of sensory processing in the brain and could provide a less redundant representation about the external world. Another powerful processing strategy is the optimization of internal representations according to the information bottleneck method. This method would allow extracting preferentially those components from high-dimensional sensory input streams that are related to other information sources, such as internal predictions or proprioceptive feedback. However, there exists a lack of models that could explain how spiking neurons could learn to execute either of these two processing strategies. We show in this article how stochastically spiking neurons with refractoriness could in principle learn in an unsupervised manner to carry out both information bottleneck optimization and the extraction of independent components. We derive suitable learning rules, which extend the well-known BCM rule, from abstract information optimization principles. These rules will simultaneously keep the firing rate of the neuron within a biologically realistic range.