Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

November 2008, Vol. 20, No. 11, Pages 2839-2861
(doi: 10.1162/neco.2008.05-07-528)
© 2008 Massachusetts Institute of Technology
A Scalable Kernel-Based Semisupervised Metric Learning Algorithm with Out-of-Sample Generalization Ability
Article PDF (825.22 KB)
Abstract

In recent years, metric learning in the semisupervised setting has aroused a lot of research interest. One type of semisupervised metric learning utilizes supervisory information in the form of pairwise similarity or dissimilarity constraints. However, most methods proposed so far are either limited to linear metric learning or unable to scale well with the data set size. In this letter, we propose a nonlinear metric learning method based on the kernel approach. By applying low-rank approximation to the kernel matrix, our method can handle significantly larger data sets. Moreover, our low-rank approximation scheme can naturally lead to out-of-sample generalization. Experiments performed on both artificial and real-world data show very promising results.