Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

April 2009, Vol. 21, No. 4, Pages 1125-1144
(doi: 10.1162/neco.2008.11-06-392)
© 2008 Massachusetts Institute of Technology
Stability of Localized Patterns in Neural Fields
Article PDF (737.07 KB)
Abstract

We investigate two-dimensional neural fields as a model of the dynamics of macroscopic activations in a cortex-like neural system. While the one-dimensional case was treated comprehensively by Amari 30 years ago, two-dimensional neural fields are much less understood. We derive conditions for the stability for the main classes of localized solutions of the neural field equation and study their behavior beyond parameter-controlled destabilization. We show that a slight modification of the original model yields an equation whose stationary states are guaranteed to satisfy the original problem and numerically demonstrate that it admits localized noncircular solutions. Typically, however, only periodic spatial tessellations emerge on destabilization of rotationally invariant solutions.