Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

February 2010, Vol. 22, No. 2, Pages 377-426
(doi: 10.1162/neco.2009.02-09-960)
No rights reserved. This work was authored as part of the Contributor’s official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. law.
Systematic Fluctuation Expansion for Neural Network Activity Equations
Article PDF (3.37 MB)
Abstract

Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate, while leaving out higher-order statistics like correlations between firing. A stochastic theory of neural networks that includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations; they depend only on the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone.