Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

October 2017, Vol. 29, No. 10, Pages 2742-2768
(doi: 10.1162/neco_a_01001)
© 2017 Massachusetts Institute of Technology
Toward an Open-Ended BCI: A User-Centered Coadaptive Design
Article PDF (965.7 KB)
Abstract

Brain-computer interfaces (BCIs) allow users to control a device by interpreting their brain activity. For simplicity, these devices are designed to be operated by purposefully modulating specific predetermined neurophysiological signals, such as the sensorimotor rhythm. However, the ability to modulate a given neurophysiological signal is highly variable across individuals, contributing to the inconsistent performance of BCIs for different users. These differences suggest that individuals who experience poor BCI performance with one class of brain signals might have good results with another. In order to take advantage of individual abilities as they relate to BCI control, we need to move beyond the current approaches. In this letter, we explore a new BCI design aimed at a more individualized and user-focused experience, which we call open-ended BCI. Individual users were given the freedom to discover their own mental strategies as opposed to being trained to modulate a given brain signal. They then underwent multiple coadaptive training sessions with the BCI. Our first open-ended BCI performed similarly to comparable BCIs while accommodating a wider variety of mental strategies without a priori knowledge of the specific brain signals any individual might use. Post hoc analysis revealed individual differences in terms of which sensory modality yielded optimal performance. We found a large and significant effect of individual differences in background training and expertise, such as in musical training, on BCI performance. Future research should be focused on finding more generalized solutions to user training and brain state decoding methods to fully utilize the abilities of different individuals in an open-ended BCI. Accounting for each individual's areas of expertise could have important implications on BCI training and BCI application design.