Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

May 2019, Vol. 31, No. 5, Pages 849-869
(doi: 10.1162/neco_a_01179)
© 2019 Massachusetts Institute of Technology
Vector-Derived Transformation Binding: An Improved Binding Operation for Deep Symbol-Like Processing in Neural Networks
Article PDF (1.12 MB)
Abstract
We present a new binding operation, vector-derived transformation binding (VTB), for use in vector symbolic architectures (VSA). The performance of VTB is compared to circular convolution, used in holographic reduced representations (HRRs), in terms of list and stack encoding capacity. A special focus is given to the possibility of a neural implementation by the means of the Neural Engineering Framework (NEF). While the scaling of required neural resources is slightly worse for VTB, it is found to be on par with circular convolution for list encoding and better for encoding of stacks. Furthermore, VTB influences the vector length less, which also benefits a neural implementation. Consequently, we argue that VTB is an improvement over HRRs for neurally implemented VSAs.