Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

December 2020, Vol. 32, No. 12, Pages 2486-2531
(doi: 10.1162/neco_a_01332)
© 2020 Massachusetts Institute of Technology
Active Learning for Level Set Estimation Under Input Uncertainty and Its Extensions
Article PDF (2.83 MB)
Abstract
Testing under what conditions a product satisfies the desired properties is a fundamental problem in manufacturing industry. If the condition and the property are respectively regarded as the input and the output of a black-box function, this task can be interpreted as the problem called level set estimation (LSE): the problem of identifying input regions such that the function value is above (or below) a threshold. Although various methods for LSE problems have been developed, many issues remain to be solved for their practical use. As one of such issues, we consider the case where the input conditions cannot be controlled precisely—LSE problems under input uncertainty. We introduce a basic framework for handling input uncertainty in LSE problems and then propose efficient methods with proper theoretical guarantees. The proposed methods and theories can be generally applied to a variety of challenges related to LSE under input uncertainty such as cost-dependent input uncertainties and unknown input uncertainties. We apply the proposed methods to artificial and real data to demonstrate their applicability and effectiveness.