Quarterly (Winter, Spring, Summer, Fall)
330 pp. per issue
8 1/2 x 11

Network Neuroscience

Olaf Sporns, Editor
2019, Vol. 3, No. 1, Pages 90-106
(doi: 10.1162/netn_a_00055)
© 2018 Massachusetts Institute of Technology Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license
Subject specificity of the correlation between large-scale structural and functional connectivity
Article PDF (3.9 MB)
Structural connectivity (SC), the physical pathways connecting regions in the brain, and functional connectivity (FC), the temporal coactivations, are known to be tightly linked. However, the nature of this relationship is still not understood. In the present study, we examined this relation more closely in six separate human neuroimaging datasets with different acquisition and preprocessing methods. We show that using simple linear associations, the relation between an individual’s SC and FC is not subject specific for five of the datasets. Subject specificity of SC-FC fit is achieved only for one of the six datasets, the multimodal Glasser Human Connectome Project (HCP) parcellated dataset. We show that subject specificity of SC-FC correspondence is limited across datasets due to relatively small variability between subjects in SC compared with the larger variability in FC.We present evidence that, in most standard datasets, the subject variation in structural connectivity (SC) may be too weak to be reflected in the functional connectivity (FC) variability. However, subject specificity of SC-FC can be captured via fine, multimodally parcellated data because of greater SC variability across subjects. Nonetheless, SC and FC each show a large component that is common across subjects, which sets limitations on the extent of SC-FC subject specificity. Implications of these findings for personalized medicine should be considered. Namely, attention to the quality of processing and parcellation methods is critical for furthering our understanding of the relationship between individual SC and FC.