MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

Selected Title Details  
Sep 2007
ISBN 0262195682
1690 pp.
BUY THE BOOK
Advances in Neural Information Processing Systems 19
Bernhard Scholkopf , John Platt and Thomas Hofmann

The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. It draws a diverse group of attendees- physicists, neuroscientists, mathematicians, statisticians, and computer scientists- interested in theoretical and applied aspects of modeling, simulating, and building neural-like or intelligent systems. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.

Table of Contents
 Contents
 Preface
 NIPS Foundation
 Commitees
 Reviewers
1 An Application of Reinforcement Learning to Aerobatic Helicopter Flight, Pieter Abbeel, Adam Coates, Morgan Quigley, Andrew Y. Ng
2 Tighter PAC-Bayes Bounds, Amiran Ambroladze, Emilio Parrado-Hernandez, John Shawe-Taylor
3 Online Classification for Complex Problems Using Simultaneous Projections, Yonatan Amit, Shai Shalev-Shwartz, Yoram Singer
4 Learning on Graph with Laplacian Regularization, Rie Kubota Ando, Tong Zhang
5 Sparse Kernel Orthonormalized PLS for feature extraction in large data sets, Jeronimo Arenas-Garcia, Kaare Brandt Petersen, Lars Kai Hansen
6 Multi-Task Feature Learning, Andreas Argyriou, Theodoros Evgeniou, Massimiliano Pontil
7 Logarithmic Online Regret Bounds for Undiscounted Reinforcement Learning, Peter Auer, Ronald Ortner
8 Efficient Methods for Privacy Preserving Face Detection, Shai Avidan, Moshe Butman
9 Active learning for misspecified generalized linear models, Francis R. Bach
10 Subordinate class recognition using relational object models, Aharon Bar Hillel, Daphna Weinshall
11 Unified Inference for Variational Bayesian Linear Gaussian State-Space Models, David Barber, Silvia Chiappa
12 A Novel Gaussian Sum Smoother for Approximate Inference in Switching Linear Dynamical Systems, David Barber, Bertrand Mesot
13 Sample Complexity of Policy Search with Known Dynamics, Peter L. Bartlett, Ambuj Tewari
14 AdaBoost is Consistent, Peter L. Bartlett, Mikhail Traskin
15 A selective attention multi-chip system with dynamic synapses and spiking neurons, Chiara Bartolozzi, Giacomo Indiveri
16 Temporal and Cross-Subject Probabilistic Models for fMRI Prediction Tasks, Alexis Battle, Gal Chechik, Daphne Koller
17 Convergence of Laplacian Eigenmaps, Mikhail Belkin, Partha Niyogi
18 Analysis of Representations for Domain Adaptation, Shai Ben- David, John Blitzer, Koby Crammer, Fernando Pereira
19 An Approach to Bounded Rationality, Eli Ben-Sasson, Adam Tauman Kalai, Ehud Kalai
20 Greedy Layer-Wise Training of Deep Networks, Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle
21 Dirichlet-Enhanced Spam Filtering based on Biased Samples, Steffen Bickel, Tobias Scheffer
22 Detecting Humans via Their Pose, Alessandro Bissacco, Ming- Hsuan Yang, Stefano Soatto
23 Similarity by Composition, Oren Boiman, Michal Irani
24 Denoising and Dimension Reduction in Feature Space, Mikio L. Braun, Joachim Buhmann, Klaus-Robert Muller
25 Learning to Rank with Nonsmooth Cost Functions, Christopher J.C. Burges, Robert Ragno, Quoc Viet Le
26 Conditional mean field, Peter Carbonetto, Nando de Freitas
27 Sparse Multinomial Logistic Regression via Bayesian L1 Regularisation, Gavin C. Cawley, Nicola L.C. Talbot, Mark Girolami
28 Branch and Bound for Semi-Supervised Support Vector Machines, Olivier Chapelle, Vikas Sindhwani, S. Sathiya Keerthi
29 Automated Hierarchy Discovery for Planning in Partially Observable Environments, Laurent Charlin, Pascal Poupart, Romy Shioda.
30 Max-margin classification of incomplete data, Gal Chechik, Geremy Heitz, Gal Elidan, Pieter Abbeel, Daphne Koller
31 Modeling General and Specific Aspects of Documents with a Probabilistic Topic Model, Chaitanya Chemudugunta, Padhraic Smyth, Mark Steyvers
32 Implicit Online Learning with Kernels, Li Cheng, S.V.N. Vishwanathan, Dale Schuurmans, Shaojun Wang, Terry Caelli
33 Context dependent amplification of both rate and event-correlation in a VLSI network of spiking neurons, Elisabetta Chicca, Giacomo Indiveri, Rodney J. Douglas
34 Bayesian Ensemble Learning, Hugh A. Chipman, Edward I. George, Robert E. McCulloch
35 Implicit Surfaces with Globally Regularised and Compactly Supported Basis Functions, Christian Walder, Bernhard Scholkopf, Olivier Chapelle
36 Map-Reduce for Machine Learning on Multicore, Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Y. Ng, Kunle Olukotun
37 Relational Learning with Gaussian Processes, Wei Chu, Vikas Sindhwani, Zoubin Ghahramani, S. Sathiya Keerthi
38 Recursive Attribute Factoring, David Cohn, Deepak Verma, Karl Pfleger
39 On Transductive Regression, Corinna Cortes, Mehryar Mohri
40 Balanced Graph Matching, Timothee Cour, Praveen Srinivasan, Jianbo Shi
41 Learning from Multiple Sources, Koby Crammer, Michael Kearns, Jennifer Wortman
42 Kernels on Structured Objects Through Nested Histograms, Marco Cuturi, Kenji Fukumizu
43 Differential Entropic Clustering of Multivariate Gaussians, Jason V. Davis, Inderjit Dhillon
44 Support Vector Machines on a Budget, Ofer Dekel, Yoram Singer
45 A Theory of Retinal Population Coding, Eizaburo Doi, Michael S. Lewicki
46 Learning to Traverse Image Manifolds, Piotr Dollar, Vincent Rabaud, Serge Belongie
47 Using Combinatorial Optimization within Max-Product Belief Propagation, John Duchi, Daniel Tarlow, Gal Elidan, Daphne Koller
48 Optimal Single-Class Classification Strategies, Ran El-Yaniv, Mordechai Nisenson
49 A Small World Threshold for Economic Network Formation, Eyal Even-Dar, Michael Kearns
50 PG-means: learning the number of clusters in data, Yu Feng, Greg Hamerly
51 Clustering Under Prior Knowledge with Application to Image Segmentation, Mario A.T. Figueiredo, Dong Seon Cheng, Vittorio Murino
52 Multi-dynamic Bayesian Networks, Karim Filali, Jeff A. Bilmes
53 Image Retrieval and Classification Using Local Distance Functions, Andrea Frome, Yoram Singer, Jitendra Malik
54 Multiple Instance Learning for Computer Aided Diagnosis, Glenn Fung, Murat Dundar, Balaji Krishnapuram, R. Bharat Rao
55 Distributed Inference in Dynamical Systems, Stanislav Funiak, Carlos Guestrin, Mark Paskin, Rahul Sukthankar
56 iLSTD: Eligibility Traces and Convergence Analysis, Alborz Geramifard, Michael Bowling, Martin Zinkevich, Richard S. Sutton
57 A PAC-Bayes Risk Bound for General Loss Functions, Pascal Germain, Alexandre Lacasse, Francois Laviolette, Mario Marchand
58 Bayesian Policy Gradient Algorithms, Mohammad Ghavamzadeh, Yaakov Engel
59 Data Integration for Classification Problems Employing Gaussian Process Priors, Mark Girolami, Mingjun Zhong
60 Approximate inference using planar graph decomposition, Amir Globerson, Tommi S. Jaakkola
61 Near-Uniform Sampling of Combinatorial Spaces Using XOR Constraints, Carla P. Gomes, Ashish Sabharwal, Bart Selman
62 No-regret Algorithms for Online Convex Programs, Geoffrey J. Gordon
63 Large Margin Multi-channel Analog-to-Digital Conversion with Applications to Neural Prosthesis, Amit Gore, Shantanu Chakrabartty
64 Approximate Correspondences in High Dimensions, Kristen Grauman, Trevor Darrell
65 A Kernel Method for the Two-Sample-Problem, Arthur Gretton, Karsten M. Borgwardt, Malte Rasch, Bernhard Scholkopf, Alexander J. Smola
66 Learning Nonparametric Models for Probabilistic Imitation, David B. Grimes, Daniel R. Rashid, Rajesh P.N. Rao
67 Training Conditional Random Fields for Maximum Labelwise Accuracy, Samuel S. Gross, Olga Russakovsky, Chuong B. Do, Serafim Batzoglou
68 Adaptive Spatial Filters with predefined Region of Interest for EEG based Brain-Computer-Interfaces, Moritz Grosse-Wentrup, Klaus Gramann, Martin Buss
69 Graph-Based Visual Saliency, Jonathan Harel, Christof Koch, Pietro Perona
70 Stratification Learning: Detecting Mixed Density and Dimensionality in High Dimensional Point Clouds, Gloria Haro, Gregory Randall, Guillermo Sapiro
71 Manifold Denoising, Matthias Hein, Markus Maier
72 TrueSkillTM: A Bayesian Skill Rating System, Ralf Herbrich, Tom Minka, Thore Graepel
73 Prediction on a Graph with a Perceptron, Mark Herbster, Massimiliano Pontil
74 Geometric entropy minimization (GEM) for anomaly detection and localization, Alfred O. Hero, III
75 Single Channel Speech Separation Using Factorial Dynamics, John R. Hershey, Trausti Kristjansson, Steven Rennie, Peder A. Olsen
76 Correcting Sample Selection Bias by Unlabeled Data, Jiayuan Huang, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, Bernhard Scholkopf
77 Sparse Representation for Signal Classification, Ke Huang, Selin Aviyente
78 In-Network PCA and Anomaly Detection, Ling Huang, XuanLong Nguyen, Minos Garofalakis, Michael I. Jordan, Anthony Joseph, Nina Taft
79 Learning Time-Intensity Profiles of Human Activity using Non- Parametric Bayesian Models, Alexander T. Ihler, Padhraic Smyth
80 Kernel Maximum Entropy Data Transformation and an Enhanced Spectral Clustering Algorithm, Robert Jenssen, Torbjorn Eltoft, Mark Girolami, Deniz Erdogmus
81 Adaptor Grammars: A Framework for Specifying Compositional Nonparametric Bayesian Models, Mark Johnson, Thomas L. Griffiths, Sharon Goldwater
82 A Humanlike Predictor of Facial Attractiveness, Amit Kagian, Gideon Dror, Tommer Leyvand, Daniel Cohen-Or, Eytan Ruppin
83 Clustering appearance and shape by learning jigsaws, Anitha Kannan, John Winn, Carsten Rother
84 A Kernel Subspace Method by Stochastic Realization for Learning Nonlinear Dynamical Systems, Yoshinobu Kawahara, Takehisa Yairi, Kazuo Machida
85 An Efficient Method for Gradient-Based Adaptation of Hyperparameters in SVM Models, S. Sathiya Keerthi, Vikas Sindhwani, Olivier Chapelle
86 Combining causal and similarity-based reasoning, Charles Kemp, Patrick Shafto, Allison Berke, Joshua B. Tenenbaum
87 A Nonparametric Approach to Bottom-Up Visual Saliency, Wolf Kienzle, Felix A. Wichmann, Bernhard Scholkopf, Matthias O. Franz
88 Hierarchical Dirichlet Processes with Random Effects, Seyoung Kim, Padhraic Smyth
89 An Information Theoretic Framework for Eukaryotic Gradient Sensing, Joseph M. Kimmel, Richard M. Salter, Peter J. Thomas
90 Information Bottleneck Optimization and Independent Component Extraction with Spiking Neurons, Stefan Klampfl, Robert Legenstein, Wolfgang Maass
91 Predicting spike times from subthreshold dynamics of a neuron, Ryota Kobayashi, Shigeru Shinomoto
92 Gaussian and Wishart Hyperkernels, Risi Kondor, Tony Jebara
93 Causal inference in sensorimotor integration, Konrad P. Kording, Joshua B. Tenenbaum
94 Multiple timescales and uncertainty in motor adaptation, Konrad P. Kording, Joshua B. Tenenbaum, Reza Shadmehr
95 Reducing Calibration Time For Brain-Computer Interfaces: A Clustering Approach, Matthias Krauledat, Michael Schroder, Benjamin Blankertz, Klaus-Robert Muller
96 Accelerated Variational Dirichlet Process Mixtures, Kenichi Kurihara, Max Welling, Nikos Vlassis
97 PAC-Bayes Bounds for the Risk of the Majority Vote and the Variance of the Gibbs Classifier, Alexandre Lacasse, Francois Laviolette, Mario Marchand, Pascal Germain, Nicolas Usunier
98 Inducing Metric Violations in Human Similarity Judgements, Julian Laub, Jakob Macke, Klaus-Robert Muller, Felix A. Wichmann.
99 Modelling transcriptional regulation using Gaussian Processes, Neil D. Lawrence, Guido Sanguinetti, Magnus Rattray
100 Learning to Model Spatial Dependency: Semi-Supervised Discriminative Random Fields, Chi-Hoon Lee, Shaojun Wang, Feng Jiao, Dale Schuurmans, Russell Greiner
101 Efficient sparse coding algorithms, Honglak Lee, Alexis Battle, Rajat Raina, Andrew Y. Ng
102 A Bayesian Approach to Diffusion Models of Decision-Making and Response Time, Michael D. Lee, Ian G. Fuss, Daniel J. Navarro
103 Efficient Structure Learning of Markov Networks using L1- Regularization, Su-In Lee, Varun Ganapathi, Daphne Koller
104 Aggregating Classification Accuracy across Time: Application to Single Trial EEG, Steven Lemm, Christin Schafer, Gabriel Curio
105 Uncertainty, phase and oscillatory hippocampal recall, Mate Lengyel, Peter Dayan
106 Blind Motion Deblurring Using Image Statistics, Anat Levin
107 Speakers optimize information density through syntactic reduction, Roger Levy, T. Florian Jaeger
108 Real-time adaptive information-theoretic optimization of neurophysiology experiments, Jeremy Lewi, Robert Butera, Liam Paninski
109 Ordinal Regression by Extended Binary Classification, Ling Li, Hsuan-Tien Lin
110 Conditional Random Sampling: A Sketch-based Sampling Technique for Sparse Data, Ping Li, Kenneth W. Church, Trevor J. Hastie
111 Generalized Regularized Least-Squares Learning with Predefined Features in a Hilbert Space, Wenye Li, Kin-Hong Lee, Kwong-Sak Leung
112 Learnability and the doubling dimension, Yi Li, Philip M. Long
113 Emergence of conjunctive visual features by quadratic independent component analysis, J.T. Lindgren, Aapo Hyvarinen
114 Bayesian Detection of Infrequent Differences in Sets of Time Series with Shared Structure, Jennifer Listgarten, Radford M. Neal, Sam T. Roweis, Rachel Puckrin, Sean Cutler
115 Analysis of Contour Motions, Ce Liu, William T. Freeman, Edward H. Adelson
116 Attribute-efficient learning of decision lists and linear threshold functions under unconcentrated distributions, Philip M. Long, Rocco A. Servedio
117 Dynamic Foreground/Background Extraction from Images and Videos using Random Patches, Le Lu, Gregory Hager
118 Effects of Stress and Genotype on Meta-parameter Dynamics in Reinforcement Learning, Gediminas Luksys, Jeremie Knusel, Denis Sheynikhovich, Carmen Sandi, Wulfram Gerstner
119 Statistical Modeling of Images with Fields of Gaussian Scale Mixtures, Siwei Lyu, Eero P. Simoncelli
120 An EM Algorithm for Localizing Multiple Sound Sources in Reverberant Environments, Michael I. Mandel, Daniel P.W. Ellis, Tony Jebara
121 Isotonic Conditional Random Fields and Local Sentiment Flow, Yi Mao, Guy Lebanon
122 Part-based Probabilistic Point Matching using Equivalence Constraints, Graham McNeill, Sethu Vijayakumar
123 Modeling Dyadic Data with Binary Latent Factors, Edward Meeds, Zoubin Ghahramani, Radford M. Neal, Sam T. Roweis
124 Fast Discriminative Visual Codebooks using Randomized Clustering Forests, Frank Moosmann, Bill Triggs, Frederic Jurie
125 Context Effects in Category Learning: An Investigation of Four Probabilistic Models, Michael C. Mozer, Michael Jones, Michael Shettel
126 Multi-Robot Negotiation: Approximating the Set of Subgame Perfect Equilibria in General-Sum Stochastic Games, Chris Murray, Geoffrey J. Gordon
127 Non-rigid point set registration: Coherent Point Drift, Andriy Myronenko, Xubo Song, Miguel A. Carreira-Perpinan
128 Fundamental Limitations of Spectral Clustering, Boaz Nadler, Meirav Galun
129 On the Relation Between Low Density Separation, Spectral Clustering and Graph Cuts, Hariharan Narayanan, Mikhail Belkin, Partha Niyogi
130 A Nonparametric Bayesian Method for Inferring Features From Similarity Judgments, Daniel J. Navarro, Thomas L. Griffiths
131 Temporal dynamics of information content carried by neurons in the primary visual cortex, Danko Nikolic, Stefan Haeusler, Wolf Singer, Wolfgang Maass
132 Blind source separation for over-determined delayed mixtures, Lars Omlor, Martin Giese
133 The Neurodynamics of Belief Propagation on Binary Markov Random Fields, Thomas Ott, Ruedi Stoop
134 Handling Advertisements of Unknown Quality in Search Advertising, Sandeep Pandey, Christopher Olston
135 Bayesian Model Scoring in Markov Random Fields, Sridevi Parise, Max Welling
136 Game Theoretic Algorithms for Protein-DNA binding, Luis Perez- Breva, Luis E. Ortiz, Chen-Hsiang Yeang, Tommi S. Jaakkola
137 Bayesian Image Super-resolution, Continued, Lyndsey C. Pickup, David P. Capel, Stephen J. Roberts, Andrew Zisserman
138 Parameter Expanded Variational Bayesian Methods, Yuan (Alan) Qi, Tommi S. Jaakkola
139 Inferring Network Structure from Co-Occurrences, Michael G. Rabbat, Mario A.T. Figueiredo, Robert D. Nowak
140 Unsupervised Regression with Applications to Nonlinear System Identification, Ali Rahimi, Ben Recht
141 Stability of K-Means Clustering, Alexander Rakhlin, Andrea Caponnetto
142 Learning to parse images of articulated bodies, Deva Ramanan
143 Efficient Learning of Sparse Representations with an Energy-Based Model, Marc¿¿¿Aurelio Ranzato, Christopher Poultney, Sumit Chopra, Yann LeCun
144 Learning to be Bayesian without Supervision, Martin Raphan, Eero P. Simoncelli
145 Boosting Structured Prediction for Imitation Learning, Nathan Ratliff, David Bradley, J. Andrew Bagnell, Joel Chestnutt
146 Large Scale Hidden Semi-Markov SVMs, Gunnar Ratsch, Soren Sonnenburg
147 Natural Actor-Critic for Road Traffic Optimisation, Silvia Richter, Douglas Aberdeen, Jin Yu
148 Computation of Similarity Measures for Sequential Data using Generalized Suffix Trees, Konrad Rieck, Pavel Laskov, Soren Sonnenburg.
149 Learning annotated hierarchies from relational data, Daniel M. Roy, Charles Kemp, Vikash K. Mansinghka, Joshua B. Tenenbaum
150 Shifting, One-Inclusion Mistake Bounds and Tight Multiclass Expected Risk Bounds, Benjamin I.P. Rubinstein, Peter L. Bartlett, J. Hyam Rubinstein
151 Neurophysiological Evidence of Cooperative Mechanisms for Stereo Computation, Jason M. Samonds, Brian R. Potetz, Tai Sing Lee
152 Robotic Grasping of Novel Objects, Ashutosh Saxena, Justin Driemeyer, Justin Kearns, Andrew Y. Ng
153 Theory and Dynamics of Perceptual Bistability, Paul R. Schrater, Rashmi Sundareswara
154 Fast Iterative Kernel PCA, Nicol N. Schraudolph, Simon Gunter, S.V.N. Vishwanathan
155 Cross-Validation Optimization for Large Scale Hierarchical Classification Kernel Methods, Matthias W. Seeger
156 Information Bottleneck for Non Co-Occurrence Data, Yevgeny Seldin, Noam Slonim, Naftali Tishby
157 Large Margin Hidden Markov Models for Automatic Speech Recognition, Fei Sha, Lawrence K. Saul
158 Nonlinear physically-based models for decoding motor-cortical population activity, Gregory Shakhnarovich, Sung-Phil Kim, Michael J. Black
159 Convex Repeated Games and Fenchel Duality, Shai Shalev- Shwartz, Yoram Singer
160 Recursive ICA, Honghao Shan, Lingyun Zhang, Garrison W. Cottrell
161 Chained Boosting, Christian R. Shelton, Wesley Huie, Kin Fai Kan
162 A recipe for optimizing a time-histogram, Hideaki Shimazaki, Shigeru Shinomoto
163 Mutagenetic tree Fisher kernel improves prediction of HIV drug resistance from viral genotype, Tobias Sing, Niko Beerenwinkel
164 Hidden Markov Dirichlet Process: Modeling Genetic Recombination in Open Ancestral Space, Kyung-Ah Sohn, Eric P. Xing
165 Learning Dense 3D Correspondence, Florian Steinke, Bernhard Scholkopf, Volker Blanz
166 An Oracle Inequality for Clipped Regularized Risk Minimizers, Ingo Steinwart, Don Hush, Clint Scovel
167 Learning Structural Equation Models for fMRI, Amos J. Storkey, Enrico Simonotto, Heather Whalley, Stephen Lawrie, Lawrence Murray, David McGonigle
168 Mixture Regression for Covariate Shift, Amos J. Storkey, Masashi Sugiyama
169 Modeling Human Motion Using Binary Latent Variables, Graham W. Taylor, Geoffrey E. Hinton, Sam T. Roweis
170 A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation, Yee Whye Teh, David Newman, Max Welling
171 Towards a general independent subspace analysis, Fabian J. Theis
172 Linearly-solvable Markov decision problems, Emanuel Todorov
173 Logistic Regression for Single Trial EEG Classification, Ryota Tomioka, Kazuyuki Aihara, Klaus-Robert Muller
174 Large Margin Component Analysis, Lorenzo Torresani, Kuangchih Lee
175 Learning Motion Style Synthesis from Perceptual Observations, Lorenzo Torresani, Peggy Hackney, Christoph Bregler
176 Large-Scale Sparsified Manifold Regularization, Ivor W. Tsang, James T. Kwok
177 Scalable Discriminative Learning for Natural Language Parsing and Translation, Joseph Turian, Benjamin Wellington, I. Dan Melamed
178 Generalized Maximum Margin Clustering and Unsupervised Kernel Learning, Hamed Valizadegan, Rong Jin
179 A Complexity-Distortion Approach to Joint Pattern Alignment, Andrea Vedaldi, Stefano Soatto
180 Online Clustering of Moving Hyperplanes, Rene Vidal
181 Comparative Gene Prediction using Conditional Random Fields, Jade P. Vinson, David DeCaprio, Matthew D. Pearson, Stacey Luoma, James E. Galagan
182 Fast Computation of Graph Kernels, S.V.N. Vishwanathan, Karsten M. Borgwardt, Nicol N. Schraudolph
183 Temporal Coding using the Response Properties of Spiking Neurons, Thomas Voegtlin
184 High-Dimensional Graphical Model Selection Using 1-Regularized Logistic Regression, Martin J. Wainwright, Pradeep Ravikumar, John D. Lafferty
185 Attentional Processing on a Spike-Based VLSI Neural Network, Yingxue Wang, Rodney J. Douglas, Shih-Chii Liu
186 Randomized PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension, Manfred K. Warmuth, Dima Kuzmin
187 Graph Laplacian Regularization for Large-Scale Semidefinite Programming, Kilian Q. Weinberger, Fei Sha, Qihui Zhu, Lawrence K. Saul
188 A Switched Gaussian Process for Estimating Disparity and Segmentation in Binocular Stereo, Oliver Williams
189 Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization, David Wipf, Rey Ramirez, Jason Palmer, Scott Makeig, Bhaskar Rao
190 Particle Filtering for Nonparametric Bayesian Matrix Factorization, Frank Wood, Thomas L. Griffiths
191 A Scalable Machine Learning Approach to Go, Lin Wu, Pierre Baldi
192 A Local Learning Approach for Clustering, Mingrui Wu, Bernhard Scholkopf
193 The Robustness-Performance Tradeoff in Markov Decision Processes, Huan Xu, Shie Mannor
194 Optimal Change-Detection and Spiking Neurons, Angela J. Yu
195 Stochastic Relational Models for Discriminative Link Prediction, Kai Yu, Wei Chu, Shipeng Yu, Volker Tresp, Zhao Xu
196 Nonnegative Sparse PCA, Ron Zass, Amnon Shashua
197 Doubly Stochastic Normalization for Spectral Clustering, Ron Zass, Amnon Shashua
198 Simplifying Mixture Models through Function Approximation, Kai Zhang, James T. Kwok
199 Hyperparameter Learning for Graph Based Semi-supervised Learning Algorithms, Xinhua Zhang, Wee Sun Lee
200 MLLE: Modified Locally Linear Embedding Using Multiple Weights, Zhenyue Zhang, Jing Wang
201 Learning with Hypergraphs: Clustering, Classification, and Embedding, Dengyong Zhou, Jiayuan Huang, Bernhard Scholkopf
202 Multi-Instance Multi-Label Learning with Application to Scene Classification, Zhi-Hua Zhou, Min-Ling Zhang
203 Unsupervised Learning of a Probabilistic Grammar for Object Detection and Parsing, Long (Leo) Zhu, Yuanhao Chen, Alan Yuille
204 A Probabilistic Algorithm Integrating Source Localization and Noise Suppression of MEG and EEG data, Johanna M. Zumer, Hagai T. Attias, Kensuke Sekihara, Srikantan S. Nagarajan
 Subject Index
 Author Index
 
Options
Related Topics
Neuroscience


© 2010 The MIT Press
MIT Logo