MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Shared Context Probabilistic Transducers

 Yoshua Bengio, Samy Bengio, Jean-Francois Isabelle and Yoram Singer
  
 

Abstract:
Recently, a model for supervised learning of probabilistic transducers represented by suffix trees was introduced. However, this algorithm tends to build very large trees, requiring very large amounts of computer memory. In this paper, we propose a new, more compact, transducer model in which one shares the parameters of distributions associated to contexts yielding similar conditional output distributions. We illustrate the advantages of the proposed algorithm with comparative experiments on inducing a noun phrase recognizer.

 
 


© 2010 The MIT Press
MIT Logo