MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Generalized Prioritized Sweeping

 David Andre, Nir Friedman and Ronald Parr
  
 

Abstract:
Prioritized sweeping is a model-based reinforcement learning method that attempts to focus an agent's limited computational resources to achieve a good estimate of the value of environment states. The classic account of prioritized sweeping uses an explicit, state-based representation of the value, reward, and model parameters. Such a representation is unwieldy for dealing with complex environments and there is growing interest in learning with more compact representations. We claim that classic prioritized sweeping is ill-suited for learning with such representations. To overcome this deficiency, we introduce generalized prioritized sweeping, a principled method for generating representation-specific algorithms for model-based reinforcement learning. We then apply this method for several representations, including state-based models and generalized model approximators (such as Bayesian networks). We describe preliminary experiments that compare our approach with classical prioritized sweeping.

 
 


© 2010 The MIT Press
MIT Logo