MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

A Solution for Missing Data In Recurrent Neural Networks With An Application To Blood Glucose Prediction

 Volker Tresp and Thomas Briegel
  
 

Abstract:
We consider neural network models for stochastic nonlinear dynamical systems where measurements of the variable of interest are only available at irregular intervals i.e. most realizations are missing. Difficulties arise since the solutions for prediction and maximum likelihood learning with missing data lead to complex integrals, which even for simple cases cannot be solved analytically. In this paper we propose a specific combination of a nonlinear recurrent neural predictive model and a linear error model which leads to tractable prediction and maximum likelihood adaptation rules. In particular, the recurrent neural network can be trained using the real-time recurrent learning rule and the linear error model can be trained by an EM adaptation rule, implemented using forward-backward Kalman filter equations. The model is applied to predict the glucose/insulin metabolism of a diabetic patient where blood glucose measurements are only available a few times a day at irregular intervals. The new model shows considerable improvement with respect to both recurrent neural networks trained with teacher forcing or in a free running mode and various linear models.

 
 


© 2010 The MIT Press
MIT Logo