MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Source Separation as a By-Product of Regularization

 Sepp Hochreiter and Juergen Schmidhuber
  
 

Abstract:
This paper reveals a previously ignored connection between two important fields: regularization and independent component analysis (ICA). We show that at least one representative of a broad class of algorithms (regularizers that reduce network complexity) extracts independent features as a by-product. This algorithm is Flat Minimum Search (FMS), a recent general method for finding low-complexity networks with high generalization capability. FMS works by minimizing both training error and required weight precision. According to our theoretical analysis the hidden layer of an FMS-trained autoassociator attempts at coding each input by a sparse code with as few simple features as possible. In experiments the method extracts optimal codes for difficult versions of the "noisy bars: benchmark problem by separating the underlying sources, whereas ICA and PCA fail. Real world images are coded with fewer bits per pixel than by ICA or PCA.

 
 


© 2010 The MIT Press
MIT Logo