MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Analyzing and Visualizing Single-Trial Event-Related Potentials

 Tzyy-Ping Jung, Scott Makeig, Marissa Westerfield, Jeanne Townsend, Eric Courchesne and Terrence J. Sejnowski
  
 

Abstract:
Event-related potentials (ERPs), are portions of electroencephalographic (EEG) recordings that are both time- and phase-locked to experimental events. ERPs are usually averaged to increase their signal/noise ratio relative to non-phase locked EEG activity, regardless of the fact that response activity in single epochs may vary widely in time course and scalp distribution. This study applies a linear decomposition tool, Independent Component Analysis (ICA) (Lee et. al., in press), to multichannel single-trial EEG records to derive spatial filters that decompose single-trial EEG epochs into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain networks. Our results show that ICA can separate artifactual, stimulus-locked, response-locked, and non-event related background EEG activities into separate components, allowing (1) removal of pervasive artifacts of all types from single-trial EEG records, and (2) identification of both stimulus- and response-locked EEG components. Second, this study proposes a new visualization tool, the `ERP image', for investigating variability in latencies and amplitudes of event-evoked responses in spontaneous EEG or MEG records. We show that sorting single-trial ERP epochs in order of a relevant response measure (e.g. reaction time) and plotting the potentials in 2-D clearly reveals underlying patterns of response variability linked to performance. These analysis and visualization tools appear broadly applicable to electrophyiological research on both normal and clinical populations.

 
 


© 2010 The MIT Press
MIT Logo