MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Learning Instance-Independent Value Functions to Enhance Local Search

 Robert Moll, Andrew G. Barto, Theodore Perkins and Richard S. Sutton
  
 

Abstract:
Reinforcement learning methods can be used to improve the performance of local search algorithms for combinatorial optimization by learning an evaluation function that predicts the outcome of search. The evaluation function is therefore able to guide search more effectively to low-cost solutions than can the original cost function. We describe a reinforcement learning method for enhancing local search that combines aspects of previous work by Zhang and Dietterich (1995) and Boyan and Moore (1997, 1998). In an off-line learning phase, a value function is learned that is useful for guiding search for multiple problem sizes and instances. We illustrate our technique by developing several such functions for the Dial-A-Ride Problem, a variant of the well-known Traveling Salesman's Problem. Overall, our learned hillclimbing results exhibit an improvement of more than 30 over the standard Dial-A-Ride local search algorithm.

 
 


© 2010 The MIT Press
MIT Logo