MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Controlling the Complexity of HMM Systems by Regularization

 Christoph Neukirchen and Gerhard Rigoll
  
 

Abstract:
This paper introduces a method for regularization of HMM systems that avoids parameter overfitting caused by insufficient training data. Regularization is done by augmenting the EM training method by a penalty term that favors simple and smooth HMM systems. The penalty term is constructed as a mixture model of negative exponential distributions that is assumed to generate the state dependent emission probabilities of the HMMs. This new method is the successful transfer of a well known regularization approach in neural networks to the HMM domain and can be interpreted as a generalization of traditional state-tying for HMM systems. The effect of regularization is demonstrated for continuous speech recognition tasks by improving overfitted triphone models and by speaker adaptation with limited training data.

 
 


© 2010 The MIT Press
MIT Logo