MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

A Reinforcement Learning Algorithm in Partially Observable Environments Using Short-Term Memory

 Nobuo Suematsu and Akira Hayashi
  
 

Abstract:
We describe a Reinforcement Learning algorithm for partially observable environments using short-term memory, which we call BLHT. Since BLHT learns a stochastic model based on Bayesian Learning, the overfitting problem is reasonably solved. Moreover, BLHT has an efficient implementation. This paper shows that the model learned by BLHT converges to one which provides the most accurate predictions of percepts and rewards, given short-term memory.

 
 


© 2010 The MIT Press
MIT Logo