MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Learning Mixture Hierarchies

 Nuno Vasconcelos and Andrew Lippman
  
 

Abstract:
The hierarchical representation of data has various applications in domains such as data mining, machine vision, or information retrieval. In this paper we introduce an extension of the Expectation-Maximization (EM) algorithm that learns mixture hierarchies in a computationally efficient manner. Efficiency is achieved by progressing in a bottom-up fashion, i.e. by clustering the mixture components of a given level in the hierarchy to obtain those of the level above. This clustering requires only knowledge of the mixture parameters, there being no need to resort to intermediate samples. In addition to practical applications, the algorithm allows a new interpretation of EM that makes clear the relationship with non-parametric kernel-based estimation methods, provides explicit control over the trade-off between the bias and variance of EM estimates, and offers new insights about the behavior of deterministic annealing methods commonly used with EM to escape local minima of the likelihood.

 
 


© 2010 The MIT Press
MIT Logo