MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Robust Learning of Chaotic Attractors

 Rembrandt Bakker, Jaap C. Schouten, Floris Takens, C. Lee Giles and Cor M. van den Bleek
  
 

Abstract:
A fundamental problem with the modeling of chaotic time series data is that minimizing short-term prediction errors does not guarantee a match between the reconstructed attractors of model and experiments. We introduce a modeling paradigm that simultaneously learns to short-term predict and to locate the outlines of the attractor by a new way of nonlinear principal component analysis. Closed-loop predictions are constrained to stay within these outlines, to prevent divergence from the attractor. Learning is exceptionally fast: parameter estimation for the 1000 sample laser data from the 1991 Santa Fe time series competition took less than a minute on a 166 MHz Pentium PC.

 
 


© 2010 The MIT Press
MIT Logo