MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Effective Learning Requires Neuronal Remodeling of Hebbian Synapses

 Gal Chechik, Isaac Meilijson and Eytan Ruppin
  
 

Abstract:
This paper revisits the classical neuroscience paradigm of Hebbian learning. We show that a necessary requirement for effective associative memory learning is that the efficacies of the incoming synapses should be uncorrelated. This requirement is difficult to achieve in a robust manner by Hebbian synaptic learning, since it depends on network level information. Effective learning can yet be obtained by a neuronal process that maintains a zero sum of the incoming synaptic efficacies. This normalization drastically improves the memory capacity of associative networks, from an essentially bounded capacity to one that linearly scales with the network's size. Such neuronal normalization can be successfully carried out by activity-dependent homeostasis of the neuron's synaptic efficacies, which was recently observed in cortical tissue. Thus, our findings strongly suggest that effective associative learning with Hebbian synapses alone is biologically implausible and that Hebbian synapses must be continuously remodeled by neuronally-driven regulatory processes in the brain.

 
 


© 2010 The MIT Press
MIT Logo