MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Learning Informative Statistics: A Nonparametric Approach

 John W. Fisher III, Alexander T. Ihler and Paul Viola
  
 

Abstract:
modeling dynamic processes. The approach can learn a compact and informative statistic which summarizes past states to predict future observations. Furthermore, the uncertainty of the prediction is characterized nonparametrically by a joint density over the learned statistic and present observation. We discuss the application of the technique to both noise driven dynamical systems and random processes sampled from a density which is conditioned on the past. In the first case we show results in which both the dynamics of random walk and the statistics of the driving noise are captured. In the second case we present results in which a summarizing statistic is learned on noisy random telegraph waves with differing dependencies on past states. In both cases the algorithm yields a principled approach for discriminating processes with differing dynamics and/or dependencies. The method is grounded in ideas from information theory and nonparametric statistics.

 
 


© 2010 The MIT Press
MIT Logo