MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Algorithms for Independent Components Analysis and Higher Order Statistics

 Daniel D. Lee, Uri Rokni and Haim Sompolinsky
  
 

Abstract:
A latent variable generative model with finite noise is used to describe several different algorithms for Independent Components Analysis (ICA). In particular, the Fixed Point ICA algorithm is shown to be equivalent to the Expectation-Maximization algorithm for maximum likelihood under certain constraints, allowing the conditions for global convergence to be elucidated. The algorithms can also be explained by their generic behavior near a singular point where the size of the optimal generative bases vanishes. An expansion of the likelihood about this singular point indicates the role of higher order correlations in determining the features discovered by ICA. The application and convergence of these algorithms are demonstrated on the learning of edge features as the independent components of natural images.

 
 


© 2010 The MIT Press
MIT Logo