MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Invariant Feature Extraction and Classification in Kernel Spaces

 Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alexander J. Smola and Klaus--Robert Müller
  
 

Abstract:
We incorporate prior knowledge to construct nonlinear algorithms for invariant feature extraction and discrimination. Employing a unified framework in terms of a nonlinear variant of the Rayleigh coefficient, we propose non-linear generalizations of Fisher's discriminant and oriented PCA using Support Vector kernel functions. Extensive simulations show the utility of our approach.

 
 


© 2010 The MIT Press
MIT Logo