MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Reinforcement Learning Using Approximate Belief States

 Andrés Rodríguez, Ronald Parr and Daphne Koller
  
 

Abstract:
decision problems (POMDPs) remains one of the most challenging areas of research in stochastic planning. One line of research in this area involves the use of reinforcement learning with belief states, probability distributions over the underlying model states. This is a promising method for small problems, but its application is limited by the intractability of computing or representing a full belief state for large problems. Recent work shows that, in many settings, we can maintain an {\em approximate belief state}, which is fairly close to the true belief state. In particular, great success has been shown with approximate belief states that ignore correlations between state variables. In this paper, we investigate two methods of full belief state reinforcement learning and one novel method for reinforcement learning using factored approximate belief states. We compare the performance of these algorithms on several well-known problem from the literature. Our results demonstrate the importance of approximate belief state representations for large problems.

 
 


© 2010 The MIT Press
MIT Logo