MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Predictive Approaches for Choosing Hyperparameters in Gaussian Processes

 S. Sundararajan and S. Sathiya Keerthi
  
 

Abstract:
Gaussian Processes are powerful regression models specified by parametrized mean and covariance functions. Standard approaches to estimate these parameters (known by the name Hyperparameters) are Maximum Likelihood (ML) and Maximum APosterior (MAP) approaches. In this paper, we propose and investigate predictive approaches, namely, maximization of Geisser's Surrogate Predictive Probability (GPP) and minimization of mean square error with respect to GPP (referred to as Geisser's Predictive mean square Error (GPE)) to estimate the hyperparameters. We also derive results for the standard Cross-Validation (CV) error and make a comparison. These approaches are tested on a number of problems and experimental results show that these approaches are strongly competitive to existing approaches.

 
 


© 2010 The MIT Press
MIT Logo