MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Grammatical bigrams

 Mark Paskin
  
 

Abstract:

Unsupervised learning algorithms have been derived for several statistical models of English grammar, but their computational complexity makes applying them to large datasets intractable. This paper presents a probabilistic model of English grammar that is much simpler than conventional models, but which admits an efficient EM training algorithm. The model is based upon grammatical bigrams, i.e., syntactic relationships between pairs of words. We present the results of experiments that quantify the representational adequacy of the grammatical bigram model, its ability to generalize from labelled data, and its ability to induce syntactic structure from large amounts of raw text.

 
 


© 2010 The MIT Press
MIT Logo