MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Generating velocity tuning by asymmetric recurrent connections

 Xiaohui Xie and Martin Giese
  
 

Abstract:

Asymmetric lateral connections are one possible mechanism that can account for the direction selectivity of cortical neurons. We present a mathematical analysis for a class of these models. Contrasting with earlier theoretical work that has relied on methods from linear systems theory, we study the network's nonlinear dynamic properties that arise when the threshold nonlinearity of the neurons is taken into account. We show that such networks have stimulus-locked traveling pulse solutions that are appropriate for modeling the responses of direction selective cortical neurons. In addition, our analysis shows that outside a certain regime of stimulus speeds the stability of this solutions breaks down giving rise to another class of solutions that are characterized by specific spatio-temporal periodicity. This predicts that if direction selectivity in the cortex is mainly achieved by asymmetric lateral connections lurching activity waves might be observable in ensembles of direction selective cortical neurons within appropriate regimes of the stimulus speed.

 
 


© 2010 The MIT Press
MIT Logo