MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

The noisy Euclidean traveling salesman problem and learning

 Mikio Braun and Joachim Buhmann
  
 

Abstract:

We consider noisy Euclidean traveling salesman problems in the plane, which are random combinatorial problems with underlying structure. Gibbs sampling is used to compute average trajectories, which estimate the underlying structure common to all instances. This procedure requires identifying the exact relationship between permutations and tours. In a learning setting, the average trajectory is used as a model to construct solutions to new instances sampled from the same source. Experimental results show that the average trajectory can in fact estimate the underlying structure and that overfitting effects occur if the trajectory adapts too closely to a single instance.

 
 


© 2010 The MIT Press
MIT Logo