MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes

 Andrew Ng and Michael Jordan
  
 

Abstract:

We compare discriminative and generative learning as typified by logistic regression and naive Bayes. We show, contrary to a widely held belief that discriminative classifiers are almost always to be preferred, that there can often be two distinct regimes of performance as the training set size is increased, one in which each algorithm does better. This stems from the observation -- which is borne out in repeated experiments -- that while discriminative learning has lower asymptotic error, a generative classifier may also approach its (higher) asymptotic error much faster.

 
 


© 2010 The MIT Press
MIT Logo