MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Probabilistic abstraction hierarchies

 Eran Segal, Daphne Koller and Dirk Ormoneit
  
 

Abstract:

Many domains are naturally organized in an abstraction hierarchy or taxonomy, where the instances in ``nearby'' classes in the taxonomy are similar. In this paper, we provide a general probabilistic framework for clustering data into a set of classes organized as a taxonomy, where each class is associated with a probabilistic model from which the data was generated. The clustering algorithm simultaneously optimizes three things: the assignment of data instances to clusters, the models associated with the clusters, and the structure of the abstraction hierarchy. A unique feature of our approach is that it utilizes global optimization algorithms for both of the last two steps, reducing the sensitivity to noise and the propensity to local maxima that are characteristic of algorithms such as hierarchical agglomerative clustering that only take local steps. We provide a theoretical analysis for our algorithm, showing that it converges to a local maximum of the joint likelihood of model and data. We present experimental results on synthetic data, and on real data in the domains of gene expression and text.

 
 


© 2010 The MIT Press
MIT Logo