MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

A new discriminative kernel from probabilistic models

 K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg and K.-R. üller
  
 

Abstract:

Recently, Jaakkola and Haussler proposed a method for constructing kernel functions from probabilistic models. Their so called ``Fisher kernel'' has been combined with discriminative classifiers such as SVM and applied successfully in e.g. DNA and protein analysis. Whereas the Fisher kernel (FK) is calculated from the marginal log-likelihood, we propose the TOP kernel derived from Tangent vectors Of Posterior log-odds. Furthermore we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing FK and TOP. In experiments our new discriminative TOP kernel compares favorably to the Fisher kernel.

 
 


© 2010 The MIT Press
MIT Logo