MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Learning lateral interactions for feature binding and sensory segmentation

 Heiko Wersing
  
 

Abstract:

We present a new approach to the supervised learning of lateral interactions for the competitive layer model (CLM) dynamic feature binding architecture. The method is based on consistency conditions, which were recently shown to characterize the attractor states of this linear threshold recurrent network. For a given set of training examples the learning problem is formulated as a convex quadratic optimization problem in the lateral interaction weights. An efficient dimension reduction of the learning problem can be achieved by using a linear superposition of basis interactions. We show the successful application of the method to a medical image segmentation problem of fluorescence microscope cell images.

 
 


© 2010 The MIT Press
MIT Logo