MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Categorization by learning and combining object parts

 Bernd Heisele, Thomas Serre, Massimiliano Pontil, Thomas Vetter and Tomaso Poggio
  
 

Abstract:

We describe an algorithm for automatically learning discriminative com-ponents of objects with SVM classifiers. It is based on growing image parts by minimizing theoretical bounds on the error probability of an SVM. Component-based face classifiers are then combined in a second stage to yield a hierarchical SVM classifier. Experimental results in face classification show considerable robustness against rotations in depth and suggest performance at significantly better level than other face detection systems. Novel aspects of our approach are: a) an algorithm to learn component-based classification experts and their combination, b) the use of 3-D morphable models for training, and c) a maximum operation on the output of each component classifier which may be relevant for biological models of visual recognition.

 
 


© 2010 The MIT Press
MIT Logo