MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Unsupervised learning of human motion models

 Yang Song, Luis Goncalves and Pietro Perona
  
 

Abstract:

This paper presents an unsupervised learning algorithm that can derive the probabilistic dependence structure of parts of an object (a moving human body in our examples) automatically from unlabeled data. The distinguished part of this work is that it is based on unlabeled data, i.e., the training features include both useful foreground parts and background clutter and the correspondence between the parts and detected features are unknown. We use decomposable triangulated graphs to depict the probabilistic independence of parts, but the unsupervised technique is not limited to this type of graph. In the new approach, labeling of the data (part assignments) is taken as hidden variables and the EM algorithm is applied. A greedy algorithm is developed to select parts and to search for the optimal structure based on the differential entropy of these variables. The success of our algorithm is demonstrated by applying it to generate models of human motion automatically from unlabeled real image sequences.

 
 


© 2010 The MIT Press
MIT Logo