MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Estimating car insurance premia: A case study in high-dimensional data inference

 Nicolas Chapados, Yoshua Bengio, Pascal Vincent, Joumana Ghosn, Charles Dugas, Ichiro Takeuchi and Linyan Meng
  
 

Abstract:

Estimating insurance premia from data is a difficult regression problem for several reasons: the large number of variables, many of which are discrete, and the very peculiar shape of the noise distribution, asymmetric with fat tails, with a large majority zeros and a few unreliable and very large values. We compare several machine learning methods for estimating insurance premia, and test them on a large data base of car insurance policies. We find that function approximation methods that do not optimize a squared loss, like Support Vector Machines regression, do not work well in this context. Compared methods include decision trees and generalized linear models. The best results are obtained with a mixture of experts, which better identifies the least and most risky contracts, and allows to reduce the median premium by charging more to the most risky customers.

 
 


© 2010 The MIT Press
MIT Logo