MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Prodding the ROC Curve: Constrained optimization of classifier performance

 Michael Mozer, Robert Dodier, Michael Colagrosso, C\'esar Guerra-Salcedo and Richard Wolniewicz
  
 

Abstract:

When designing a two-alternative classifier, one ordinarily aims to maximize the classifier's ability to discriminate between members of the two classes. We describe a situation in a real-world business application of machine-learning prediction in which an additional constraint is placed on the nature of the solution: that the classifier achieve a specified correct acceptance or correct rejection rate (i.e., that it achieve a fixed accuracy on members of one class or the other). Our domain is predicting churn in the telecommunications industry. Churn refers to customers who switch from one service provider to another. We propose four algorithms for training a classifier subject to this domain constraint, and present results showing that each algorithm yields a reliable improvement in performance. Although the improvement is modest in magnitude, it is nonetheless impressive given the difficulty of the problem and the financial return that it achieves to the service provider.

 
 


© 2010 The MIT Press
MIT Logo