MIT CogNet, The Brain Sciences ConnectionFrom the MIT Press, Link to Online Catalog
SPARC Communities
Subscriber : Stanford University Libraries » LOG IN

space

Powered By Google 
Advanced Search

 

Stabilizing value function approximation with the BFBP algorithm

 Xin Wang and Thomas Dietterich
  
 

Abstract:

We address the problem of non-convergence of online reinforcement learning algorithms (e.g., Q learning and SARSA(λ)) by adopting an incremental-batch approach that separates the exploration process from the function fitting process. Our BFBP (Batch Fit to Best Paths) algorithm alternates between an exploration phase (during which trajectories are generated to try to find fragments of the optimal policy) and a function fitting phase (during which a function approximator is fit to the best known paths from start states to terminal states). An advantage of this approach is that batch value-function fitting is a global process, which allows it to address the tradeoffs in function approximation that cannot be handled by local, online algorithms. This approach was pioneered by Boyan and Moore with their GrowSupport and ROUT algorithms. We show how to improve upon their work by applying a better exploration process and by enriching the function fitting procedure to incorporate Bellman error and advantage error measures into the objective function. The results show improved performance on several benchmark problems.

 
 


© 2010 The MIT Press
MIT Logo