Subscriber :
Stanford University Libraries
»
LOG IN
Home
Library
Journals
Books
Reference Works
Conference Materials
What's New
News
Jobs
Calls For Papers
Departments
OpenCourseWare
The Brain Sciences at MIT
Multimedia
For Librarians
space
Advanced Search
CogNet Library: Journals
Neural Computation
The MIT Press
Volume 9 Issue 2
Feb 01, 1997
ISSN: 08997667
Neural Computation
Volume 9 : Issue 2
Table of Contents
Probabilistic Independence Networks for Hidden Markov Probability Models
Padhraic Smyth, David Heckerman and Michael I. Jordan
Page
227
Using Expectation-Maximization for Reinforcement Learning
Peter Dayan and Geoffrey E. Hinton
Page
271
Computing with the Leaky Integrate-and-Fire Neuron: Logarithmic Computation and Multiplication
Doron Tal and Eric L. Schwartz
Page
305
Effect of Delay on the Boundary of the Basin of Attraction in a Self-Excited Single Graded-Response Neuron
K. Pakdaman, C. P. Malta, C. Grotta-Ragazzo and J.-F. Vibert
Page
319
Shattering All Sets of k Points in General Position Requires (k 1)/2 Parameters
Eduardo D. Sontag
Page
337
Statistical Inference, Occam's Razor, and Statistical Mechanics on the Space of Probability Distributions
Vijay Balasubramanian
Page
349
Bias/Variance Analyses of Mixtures-of-Experts Architectures
Robert A. Jacobs
Page
369
The Behavior of Forgetting Learning in Bidirectional Associative Memory
Chi Sing Leung and Lai Wan Chan
Page
385
Adaptive Encoding Strongly Improves Function Approximation with CMAC
Martin Eldracher, Alexander Staller and Ren Pompl
Page
403
An Analog Memory Circuit for Spiking Silicon Neurons
John G. Elias, David P. M. Northmore and Wayne Westerman
Page
419
Average-Case Learning Curves for Radial Basis Function Networks
Sean B. Holden and Mahesan Niranjan
Page
441
A Sequential Learning Scheme for Function Approximation Using Minimal Radial Basis Function Neural Networks
Lu Yingwei, N. Sundararajan and P. Saratchandran
Page
461
© 2010 The MIT Press