Subscriber :
Stanford University Libraries
»
LOG IN
Home
Library
Journals
Books
Reference Works
Conference Materials
What's New
News
Jobs
Calls For Papers
Departments
OpenCourseWare
The Brain Sciences at MIT
Multimedia
For Librarians
space
Advanced Search
CogNet Library: Journals
Neural Computation
The MIT Press
Volume 21 Issue 2
Feb 01, 2009
ISSN: 08997667
Neural Computation
Volume 21 : Issue 2
Table of Contents
A Spiking Neural Network Model of an Actor-Critic Learning Agent
Wiebke Potjans, Abigail Morrison and Markus Diesmann
Page
301
A Gradient Learning Rule for the Tempotron
Robert Urbanczik and Walter Senn
Page
340
Simplicity and Efficiency of Integrate-and-Fire Neuron Models
Hans E. Plesser and Markus Diesmann
Page
353
Spike Train Statistics and Dynamics with Synaptic Input from any Renewal Process: A Population Density Approach
Cheng Ly and Daniel Tranchina
Page
360
Generating Spike Trains with Specified Correlation Coefficients
Jakob H. Macke, Philipp Berens, Alexander S. Ecker, Andreas S. Tolias and Matthias Bethge
Page
397
A Reproducing Kernel Hilbert Space Framework for Spike Train Signal Processing
Antnio R. C. Paiva, Il Park and Jos C. Prncipe
Page
424
Identifying Functional Connectivity in Large-Scale Neural Ensemble Recordings: A Multiscale Data Mining Approach
Seif Eldawlatly, Rong Jin and Karim G. Oweiss
Page
450
State-Dependent Computation Using Coupled Recurrent Networks
Ueli Rutishauser and Rodney J. Douglas
Page
478
The Problem of Rapid Variable Creation
Robert F. Hadley
Page
510
Nonparametric Conditional Density Estimation Using Piecewise-Linear Solution Path of Kernel Quantile Regression
Ichiro Takeuchi, Kaname Nomura and Takafumi Kanamori
Page
533
Arbitrary Norm Support Vector Machines
Kaizhu Huang, Danian Zheng, Irwin King and Michael R. Lyu
Page
560
Sequential Triangle Strip Generator Based on Hopfield Networks
Ji ma and Radim Lnnika
Page
583
© 2010 The MIT Press