Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

March 1, 2004, Vol. 16, No. 3, Pages 501-533
(doi: 10.1162/089976604772744893)
© 2004 Massachusetts Institute of Technology
Rapid Processing and Unsupervised Learning in a Model of the Cortical Macrocolumn
Article PDF (3.63 MB)
Abstract

We study a model of the cortical macrocolumn consisting of a collection of inhibitorily coupled minicolumns. The proposed system overcomes several severe deficits of systems based on single neurons as cerebral functional units, notably limited robustness to damage and unrealistically large computation time. Motivated by neuroanatomical and neurophysiological findings, the utilized dynamics is based on a simple model of a spiking neuron with refractory period, fixed random excitatory interconnection within minicolumns, and instantaneous inhibition within one macrocolumn. A stability analysis of the system's dynamical equations shows that minicolumns can act as monolithic functional units for purposes of critical, fast decisions and learning. Oscillating inhibition (in the gamma frequency range) leads to a phase-coupled population rate code and high sensitivity to small imbalances in minicolumn inputs. Minicolumns are shown to be able to organize their collective inputs without supervision by Hebbian plasticity into selective receptive field shapes, thereby becoming classifiers for input patterns. Using the bars test, we critically compare our system's performance with that of others and demonstrate its ability for distributed neural coding.