Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

April 2010, Vol. 22, No. 4, Pages 969-997
(doi: 10.1162/neco.2009.04-09-1002)
© 2009 Massachusetts Institute of Technology
Dynamical Mean Field Model of a Neural-Glial Mass
Article PDF (662.57 KB)
Abstract

Our goal is to model the behavior of an ensemble of interacting neurons and astrocytes (the neural-glial mass). For this, a model describing N tripartite synapses is proposed. Each tripartite synapse consists of presynaptic and postsynaptic nerve terminals, as well as the synaptically associated astrocytic microdomain, and is described by a system of 13 stochastic differential equations. Then, by applying the dynamical mean field approximation (DMA) (Hasegawa, 2003a, 2003b) the system of 13N equations is reduced to 13(13 + 2) = 195 deterministic differential equations for the means and the second-order moments of local and global variables. Simulations are carried out for studying the response of the neural-glial mass to external inputs applied to either the presynaptic terminals or the astrocytes. Three cases were considered: the astrocytes influence only the presynaptic terminal, only the postsynaptic terminal, or both the presynaptic and postsynaptic terminals. As a result, a wide range of responses varying from singles spikes to train of spikes was evoked on presynaptic and postsynaptic terminals. The experimentally observed phenomenon of spontaneous activity in astrocytes was replicated on the neural-glial mass. The model predicts that astrocytes can have a strong and activity-dependent influence on synaptic transmission. Finally, simulations show that the dynamics of astrocytes influences the synchronization ratio between neurons, predicting a peak in the synchronization for specific values of the astrocytes’ parameters.